KnigaRead.com/

Виктор Борисов - Юный радиолюбитель [7-изд]

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Виктор Борисов, "Юный радиолюбитель [7-изд]" бесплатно, без регистрации.
Перейти на страницу:

Начальная емкость, а также рекомендуемый разрядный ток или сопротивление внешней цепи, определяющее разрядный ток элемента или батареи, указывают иногда на их этикетках или в справочной литературе.


ТРАНСФОРМАЦИЯ ПЕРЕМЕННОГО ТОКА

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т. е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы.

Трансформаторы широко применяют и в радиотехнике.

Схематическое устройство простейшего трансформатора показано на рис. 56. Он состоит из двух катушек из изолированного провода, называемых обмотками? насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод — линией между ними.



Рис. 56. Трансформатор с магнитопроводом из стали:

а — устройство в упрощенном виде; б — схематическое изображение


Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую-либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток — лампа станет гореть.

Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной, а обмотку, в которой индуцируется переменное напряжение — вторичной.

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение.

Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В — это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 110 В — это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае — первичной.

Но, пользуясь трансформатором, ты не должен забывать о том, что мощность тока (Р = U·I), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении.

Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков. С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи.

Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чем больше объем магнитопровода, тем большая мощность тока может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой.

Но запомни: трансформаторы постоянный ток не трансформируют.

Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди.

Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки римскими цифрами.

Принцип действия высокочастотных трансформаторов, предназначаемых для трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 57).



Рис. 57. Высокочастотные трансформаторы без сердечников (слева катушки трансформатора с общим каркасом; справа — катушки трансформатора на отдельных каркасах; в центре обозначение на схемах)


При появлении тока высокой частоты в одной из катушек вокруг нее возникает быстропеременное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.

Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 58), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками.



Рис 58. Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева — со стержневым, справа с кольцевым (тороидальным) сердечником)


Наиболее распространены ферритовые сердечники С одним из таких сердечников ферритовым стержнем — ты уже имел дело во второй беседе. Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника.

Магнитодиэлектрический сердечник высокочастотного трансформатора независимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, — прямой линией между катушками, а обмотки, как и катушки индуктивности, — латинскими буквами L.


РЕЗИСТОРЫ

Это детали, пожалуй, наиболее многочисленны в приемниках и усилителях. В транзисторном приемнике средней сложности, например, их может быть 20–25 штук. Используют же их для ограничения тока в цепях, для создания на отдельных участках цепей падений напряжений, для разделения пульсирующего тока на его составляющие, для регулирования громкости, тембра звука и т. д.

Для резисторов сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер, используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов. Это проволочные резисторы. Для резисторов больших сопротивлений, рассчитанных на сравнительно небольшие токи, используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы. Эти резисторы называют непроволочными резисторами.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*